Pharmacokineticpharmacodynamic based economic models of rituximab for follicular lymphoma

Joshua Pink, Dyfrig Hughes, Bangor University Steven Lane, University of Liverpool

Health Economics

- The branch of economics associated with issues relating to scarcity in the allocation of resources for health care.
- Cost-utility analyses estimate the ratios between costs and benefits of health-related interventions.
- Benefits are usually expressed in terms of QALYs (Quality-adjusted life years).

Health Economic Evaluation

- Usually reliant on modelling to give an outcome expressed as incremental £/QALY gained.
 - Data from clinical trial(s).
 - Estimates for effectiveness, costs and health utilities.
- Increasing need for early estimations of economic value at a time when confirmatory trial evidence does not exist.
 - Value-based pricing.
 - Internal decisions informing drug development.

PKPDPE Modelling

- Link together established population PKPD models with health economic models by simulating the outcome of clinical trials.
- £/QALY can thus be reached as an outcome measure.
- Trial design can be made, based on the actual end criteria by which success will ultimately be judged.
- Amenable to Value of Information analysis.
 - Informing trial design.
 - Identification of subgroups etc.

Case Study - Rituximab

- Rituximab is a monoclonal antibody used in the treatment of follicular lymphoma.
- Separate evidence available for its PK, PD (progression-free survival) and cost-effectiveness.
- Aim is to make use of these data to develop a PKPDPE model.
 - Proof of concept exercise.
 - Compare PKPDPE output with industry submission to NICE.

Rituximab Model - overview

- PK model Ng et al.
 - Two compartment linear model.
 - BSA and gender as significant covariates.
 - Based on 102 patients with RA.
- PD model Ternant et al.

$$Cm(t) = \frac{\int_{t_n}^t C(\tau) d\tau}{t - t_n}$$

 $PFS(t) = exp \left(-(\lambda_{max}(1 - \frac{Cm^{\gamma}}{Cm_{50}^{\gamma} + Cm^{\gamma}}))t\right)$

PFS

Prog

Death

Methods

- Overview:
 - Replicate NICE STA economic model, but substitute trial-reported PFS with PFS derived from PKPD simulation.
- Clinical data:
 - Overall survival data/parameters taken from EORTC 20981 trial.
 - Progression free survival simulated from PKPD model.
- Other parameters are all taken from the NICE STA submission:
 - Trial also provides data on incidences/costs of adverse events.
 - Other costs taken from NHS reference costs.
 - Health utility scores come from an Oxford Outcome Group study.

PK Model – Ng et al

PD Model – Ternant et al

Results

Value	Simulation	Original	95% CR for difference
Median survival – C	5.288	5.214	
Median survival – T	6.267	6.221	
Mean life expectancy – C	5.4026	5.4092	
Mean life expectancy – T	6.5878	6.5998	
Total cost – C	£17,419	£14,722	
Total cost - T	£22,736	£21,608	
Incremental cost	£5,317	£6,886	(-£829,£2,958)
Incremental life years	0.9973	1.0001	
Incremental QALYs	0.5703	0.8919	(0.0027,0.5872)
Incremental cost per QALY	£9,323	£7,721	(-£1,943,£5,955)

Probabilistic Sensitivity Analysis

Incremental QALYs gained

Cost-effectiveness Acceptability Curve

Agreement of modelling approaches

Case study #2: PACIFICO Trial

- Phase III multicentre trial comparing two different Rituximab-Chemotherapy induction regimens (R-CVP and R-FC) for Follicular Lymphoma in Older Patients.
 Currently recruiting
- Rituximab is used in both the induction and maintenance phases of the treatment.

Methods

Clinical data:

- Baseline hazards and response rates for the two chemotherapy regimens taken from a trial comparing FC and CVP.
- A meta-analysis of trials containing FC or CVP was conducted to obtain information on adverse events and the treatment effect of rituximab.
- PKPD model provides PFS data, which is combined with allcause mortality data and data on 2nd line chemotherapy.
- Economic data:
 - Extrapolated to a lifetime horizon of analysis.
 - Taken from previously published economic evaluations.

PACIFICO Simulation

Time (years)

Results

Value	R-CVP	R-FC
Median survival	9.008	9.542
Mean life expectancy	10.1577	10.6678
Total cost	£35,833	£41,401
Incremental cost		£5,568
Incremental life years		0.3260
Incremental QALYs		0.2873
Incremental cost per QALY		£19,376

PACIFICO Simulation

Applications

- Clinical trial design Simulations can help to inform protocol design in many ways:
 - Sample sizes, dosing regimens, important subgroups.
 - Adaptive trial design.
 - Extrapolation of data beyond the time limits of trials.
 - Model protocol deviations (e.g. Non-compliance).
 - Amenable to value of information analysis.
- Inform stop/go decisions.
 - Early estimates of cost-effectiveness.

Other case studies

- Atrial fibrillation Comparing new anticoagulants with standard therapy (i.e. warfarin).
- Warfarin Comparing genotype guided dosing algorithms with standard dosing.
- Diabetes PKPD models with an output of HbA1C levels can be used as an input to economic models.